Área de uma região triangular através do determinante
A expressão para o cálculo de área de uma região triangular é conhecida desde os primeiros passos da geometria na escola. Entretanto, quando mesclamos este conceito com a geometria analítica é necessário abarcarmos também conceitos do cálculo de determinantes.
Bem, sabemos que os elementos que fundamentam a geometria analítica são
os pontos e suas coordenadas, já que através destes podemos calcular
distâncias, coeficientes angulares das retas e áreas de figuras planas.
Dentre os cálculos das áreas de figuras planas, existe uma expressão
que determina a área de uma região triangular utilizando apenas as
coordenadas dos vértices do triângulo.
Portanto, consideremos um triângulo com vértices de coordenadas
quaisquer e assim vejamos como calcular a área desse triângulo apenas
com as coordenadas dos seus vértices.
O parâmetro D é determinado pela matriz das coordenadas dos vértices do triângulo ABC.
Note que o parâmetro D é a mesma matriz determinante para verificar a condição de alinhamento de três pontos (ver Condição de alinhamento de três pontos).
Assim sendo, caso você verifique a área de um suposto triângulo e o
determinante dê zero, saiba que na verdade esses três pontos não
constituem um triângulo, pois estão alinhados (por isso a área é zero).
Uma observação importante em relação à expressão para o cálculo da área
é quanto ao Parâmetro D estar em módulo, ou seja, usaremos o seu valor
absoluto. Por se tratar de área, não devemos adotar um determinante
negativo, pois isso resultará em uma área negativa e isso não existe.
Vejamos um exemplo para uma melhor compreensão:
“Determine a área da região triangular que tem como vértices os pontos A (4,0), B (0,0) e C (2,2)”.
Portanto, a área da região triangular do triângulo ABC é de 4 u.a (unidades de área).
Por Gabriel Alessandro de Oliveira
Graduado em Matemática
Equipe BrasilEscola