quarta-feira, 4 de junho de 2014

GEOMETRIA ANALÍTICA - EQUAÇÃO DA CIRCUNFERÊNCIA

www.somatematica.com.br

Geometria Analítica: Circunferência
  
Equações da circunferência
Equação reduzida
    Circunferência é o conjunto de todos os pontos de um plano eqüidistantes de um ponto fixo, desse mesmo plano, denominado centro da circunferência:
   Assim, sendo C(a, b) o centro e P(x, y) um ponto qualquer da circunferência, a distância de C a P(dCP) é o raio dessa circunferência. Então:
    Portanto, (x - a)2 + (y - b)2 =r2 é a equação reduzida da circunferência e permite determinar os elementos essenciais para a construção da circunferência: as coordenadas do centro e o raio.
Observação: Quando o centro da circunfer6encia estiver na origem ( C(0,0)), a equação da circunferência será x2 + y2 = r2 .

Equação geral
   Desenvolvendo a equação reduzida, obtemos a equação geral da circunferência:
    Como exemplo, vamos determinar a equação geral da circunferência de centro C(2, -3) e raio r = 4.
   A equação reduzida da circunferência é:
( x - 2 )2 +( y + 3 )2 = 16
   Desenvolvendo os quadrados dos binômios, temos:















Nenhum comentário:

Postar um comentário