Área da base circular → Ab = π * r²
Volume
V = Ab * h → V = π * r² * h
Esse tipo de sólido geométrico é muito utilizado no cotidiano como reservatório de substâncias liquidas e gasosas.
Quando trabalhamos com sólidos geométricos precisamos relembrar as principais relações entre as medidas de volume e de capacidade, veja:
1 m³ (metro cúbico) = 1 000 litro
1 dm³ (decímetro cúbico) = 1 litro
1 cm³ (centímetro cúbico) = 1 ml
Exemplo 1
Um tanque no formato cilíndrico é utilizado no armazenamento de combustível de uma transportadora de produtos alimentícios. As medidas desse tanque são as seguintes: raio da base medindo 4 metros e altura igual a 12 metros. Deseja-se encher esse tanque com óleo diesel para abastecer a frota de 150 caminhões que possuem o tanque também no formato cilíndrico, medindo 1,5 metros de altura e raio da base medindo 90 centímetros. Verifique se a quantidade de óleo diesel a ser armazenado no tanque da empresa é necessária para abastecer todos os caminhões uma única vez durante um dia, considerando que o combustível dos caminhões esteja bem próximo de acabar.
Volume do tanque da empresa
V = π * r² * h
V = 3,14 * 4² * 12
V = 3,14 * 16 * 12
V = 602,88 m³
Volume do tanque de cada caminhão
90 centímetros equivale a 0,9 metros
V = π * r² * h
V = 3,14 * 0,9² * 1,5
V = 3,14 * 0,81 * 1,5
V = 3,8151 m³
Quantidade necessária de combustível para abastecer a frota:
150 * 3,8151 = 572,27 m³
A capacidade total do tanque de armazenamento é de 602,88 m³ e a quantidade necessária para abastecer todos os caminhões é de 572,27 m³, então o óleo diesel do tanque é suficiente para abastecer toda a frota e ainda sobram 30,61 m³ de óleo.
Exemplo 2
Deseja-se construir um tanque no formato cilíndrico com volume de, aproximadamente, 250 m³ (metros cúbicos) e altura igual a 9 metros. Determine a medida aproximada do raio da base.
V = π * r² * h
250 = 3,14 * r² * 9
250 = 28,26 * r²
r² = 250 / 28,26
r² = 8,84
√r² = √8,84
r = 2,9 m (aproximadamente)
Cilindro Circular
Sejam α e β dois planos paralelos distintos, uma reta s secante a esses planos e um círculo C de centro O contido em α. Consideremos todos os segmentos de reta, paralelos a s, de modo que cada um deles tenha um extremo pertencente ao círculo C e o outro extremo pertencente a β.
Sejam α e β dois planos paralelos distintos, uma reta s secante a esses planos e um círculo C de centro O contido em α. Consideremos todos os segmentos de reta, paralelos a s, de modo que cada um deles tenha um extremo pertencente ao círculo C e o outro extremo pertencente a β.
A reunião de todos esses segmentos de reta é um
sólido chamado de cilindro circular, limitado de bases C e C’ ou
simplesmente cilindro circular.
Cilindro circular reto
No cilindro circular reto a geratriz forma com o plano da base um ângulo de 90º. No cilindro circular reto a medida h de uma geratriz é a altura do cilindro.
Cilindro circular reto
No cilindro circular reto a geratriz forma com o plano da base um ângulo de 90º. No cilindro circular reto a medida h de uma geratriz é a altura do cilindro.
O cilindro circular reto também é conhecido por cilindro de revolução, pois pode ser obtido pela revolução de 360º de uma região retangular em torno de um eixo.
Cilindro equilátero
O cilindro que possui as seções meridianas quadradas é chamado de cilindro equilátero.
No cilindro equilátero a altura é igual ao diâmetro da base: h = 2r.
O cilindro que possui as seções meridianas quadradas é chamado de cilindro equilátero.
No cilindro equilátero a altura é igual ao diâmetro da base: h = 2r.
Área Lateral e Área total de um cilindro circular reto
A superfície de um cilindro reto de altura h e raio da base r é equivalente à reunião de uma região retangular, de lados 2πr e h, com dois círculos de raio r. Observe a planificação do cilindro.
A área do retângulo equivalente à superfície lateral do cilindro é a área lateral Aℓ do cilindro, ou seja: A superfície de um cilindro reto de altura h e raio da base r é equivalente à reunião de uma região retangular, de lados 2πr e h, com dois círculos de raio r. Observe a planificação do cilindro.
Aℓ = 2*π*r*h
A área total At do cilindro é igual à soma da área lateral Aℓ com as áreas das duas bases, ou seja:
At = 2*π*r*h + π*r2 + π*r2 → At = 2*π*r*h + 2π*r2
Nenhum comentário:
Postar um comentário