quarta-feira, 26 de fevereiro de 2014

Área e volume da Pirâmide

. Pirâmides regulares


Pirâmide: Uma figura espacial que possui uma face poligonal denominada base, e faces laterais em forma de triângulos com um vértice em comum. A distância deste vértice até a base da pirâmide é sua altura. A pirâmide é regular quando sua base for um polígono regular.

2.1 Pirâmide reta: A pirâmide é reta quando todos as faces laterais forem todas triângulos iguais. Neste caso a projeção do vértice da pirâmide sobre a base coincide com o centro geométrico da base.

Página 3

Definições complementares

Al → total da área lateral que é a soma das áreas dos triângulos laterais
Ab → área do polígono da base (vide fórmulas no artigo Quadrilátero - Cálculo de áreas)
h → altura da pirâmide (distância entre a base, perpendicular a ela, e o vértice)

Área total:
AT = Al + Ab

Volume da pirâmide:
Página 3

2.2 Pirâmide oblíqua: É aquela em que os triângulos que formam as faces laterais são diferentes ente si. Neste caso, a projeção do vértice da pirâmide sobre a base não coincide com o centro geométrico da mesma.

Página 3

As fórmulas para cálculo das áreas e do volume continuam as mesmas, pois a altura é sempre a distância entre o vértice e a base, perpendicular a ela ou ao plano que a contém.

3. Pirâmides e prismas especiais


Um prisma especial, por exemplo, é o cubo: trata-se de um prisma de bases quadradas e iguais às faces laterais, ou seja, a figura possui seis faces iguais formadas por quadrados.

Uma pirâmide especial, por exemplo, é o tetraedro: trata-se de uma pirâmide com base triangular regular e igual às faces laterais, ou seja, possui quatro faces iguais formadas por triângulos equiláteros.

Exemplo - Apótema da Pirâmide

Determine a medida do apótema da pirâmide a seguir, sabendo que sua altura mede 4,8 cm e o apótema da base mede 3,6 cm.

Resolução:
O apótema de uma pirâmide é o segmento que parte do vértice até a base da lateral, formando um ângulo reto, isto é, a medida da altura da face lateral.
a² = 3,6² + 4,8²
a² = 12,96 + 23,04
a² = 36
√a² = √36
a = 6 cm 

Dada uma região poligonal de n vértices e um ponto V fora da região (outro plano), ao traçarmos segmentos de retas entre os vértices da região poligonal e o ponto V, construímos uma pirâmide que será classificada de acordo com o número de lados do polígono da base.

Os segmentos AV, BV e CV são as arestas laterais da pirâmide.
Os pontos A, B, C e V são os vértices.
Os triângulos VAB,VBC e VCA são as faces laterais.
O triângulo ABC é outra face da pirâmide e constitui a base.
A distância do ponto V ao centro da base constitui a altura da pirâmide.

A classificação de uma pirâmide depende do número de arestas da região da área da base.

Base é um triângulo
Nome: pirâmide triangular
Número de faces: três faces laterais mais face da base, portanto, quatro faces.

Base é um quadrado
Nome: pirâmide quadrangular
Número de faces: quatro faces laterais mais face da base, portanto, cinco faces.

Base é um pentágono
Nome: pirâmide pentagonal
Número de faces: cinco faces laterais mais face da base, portanto, seis faces.

Base é um hexágono
Nome: pirâmide de base hexagonal
Número de faces: seis faces laterais mais face da base, portanto, sete faces.

 
Pirâmide triangular                   Pirâmide quadrangular                        Pirâmide pentagonal




Altura, apótema da base e apótema da pirâmide

h: altura da pirâmide
m’: apótema da pirâmide
m: apótema da base

Pelo teorema de Pitágoras temos:
m’² = h² + m²



 


Nenhum comentário:

Postar um comentário