Turma: 1º E
Limite da soma dos termos de uma PG, quando a razão tem valor maior que -1 e menor que 1. Aplicações no cálculo de fração geratriz de uma dízima periódica.
Considere uma PG ILIMITADA ( infinitos termos) e decrescente. Nestas condições, podemos considerar que no limite teremos an = 0. Substituindo na fórmula anterior, encontraremos:
Exemplo:
Resolva a equação: x + x/2 + x/4 + x/8 + x/16 + ... =100
Ora, o primeiro membro é uma PG de primeiro termo x e razão 1/2. Logo, substituindo na fórmula, vem:
Daí, vem: x = 100 . 1/2 = 50
Vejam algumas questões de vestibulares. Observem que o grau de dificuldade destas questões é muito superior aos tratados na sala de aula. Em uma escola com tanta diversidade, precisamos contemplar a maioria que, infelizmente, apresenta grande defasagem de conhecimento matemático de séries anteriores. Para aqueles que gostam de estudar e que pretender ingressar em faculdades :
1) O limite da expressão onde x é positivo, quando o número de radicais aumenta indefinidamente
é igual a:
A)1/x
*B) x
C) 2x
D) n.x
E) 1978x
Solução:
Observe que a expressão dada pode ser escrita como:
x1/2. x1/4 . x1/8 . x1/16 . ... = x1/2 + 1 / 4 + 1/8 + 1/16 + ...
O expoente é a soma dos termos de uma PG infinita de primeiro termo a1 = 1 /2 e
razão q = 1 /2. Logo, a soma valerá: S = a1 / (1 – q) = (1 /2) / 1 – (1 /2) = 1
Então, x1/2 + 1 / 4 + 1/8 + 1/16 + ... = x1 = x
2)Seja x o menor ângulo
interno do quadrilátero em questão. Como os ângulos estão em Progressão
Geométrica de razão 2, podemos escrever a PG de 4 termos:
( x, 2x, 4x, 8x ).
Ora, a soma dos ângulos internos de um quadrilátero vale 360º . Logo,
x + 2x + 4x + 8x = 360º
15.x = 360º
Portanto, x = 24º . Os ângulos do quadrilátero são, portanto: 24º, 48º, 96º e 192º.
O problema pede um dos ângulos. Logo, alternativa D.
3)Se a soma dos tres primeiros termos de uma PG
decrescente é 39 e o seu produto é 729 , então sendo a, b e c os tres
primeiros termos , pede-se calcular o valor de a2 + b2 + c2 .
Solução:
Sendo q a razão da PG, poderemos escrever a sua forma genérica: (x/q, x, xq).
Como o produto dos 3 termos vale 729, vem:
x/q . x . xq = 729 de onde concluímos que:
x3 = 729 = 36 = 33 . 33 = 93 , logo, x = 9.
Portanto a PG é do tipo: 9/q, 9, 9q
É dado que a soma dos 3 termos vale 39, logo:
9/q + 9 + 9q = 39 de onde vem: 9/q + 9q – 30 = 0
Multiplicando ambos os membros por q, fica:
9 + 9q2 – 30q = 0
Dividindo por 3 e ordenando, fica:
3q2 – 10q + 3 = 0, que é uma equação do segundo grau.
Resolvendo a equação do segundo grau acima encontraremos q = 3 ou q = 1/3.
Como é dito que a PG é decrescente, devemos considerar apenas o valor
q = 1/3, já que para q = 3, a PG seria crescente.
Portanto, a PG é:
9/q, 9, 9q, ou substituindo o valor de q vem: 27, 9, 3.
O problema pede a soma dos quadrados, logo:
a2 + b2 + c2 = 272 + 92 + 32 = 729 + 81 + 9 = 819
Turma: 1º F
Avaliação Contínua sobre Progressão Geométrica. Ao término da avaliação foi proposta uma atividade para introdução ao limite da soma de termos de uma PG decrescente.
Turma: 3º C
Texto e explicações sobre as observações que devem ser feitas em uma equação da reta.
Atividade Avaliativa com exercícios básicos sobre o tema acima. Atividade em duplas e com consulta.
Turma: 3º B
Recuperação Contínua: correção e retomada dos conteúdos da avaliação.
Nenhum comentário:
Postar um comentário