quarta-feira, 26 de março de 2014

Geometria Analítica - III

CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

Três pontos estão alinhados se, e somente se, pertencerem à mesma reta.


Para verificarmos se os pontos estão alinhados, podemos utilizar a construção gráfica determinando os pontos de acordo com suas coordenadas posicionais. Outra forma de determinar o alinhamento dos pontos é através do cálculo do determinante pela regra de Sarrus envolvendo a matriz das coordenadas.

Exemplo 1

Dados os pontos A (2, 5), B (3, 7) e C (5, 11), vamos determinar se estão alinhados.
Diagonal principal

2 * 7 * 1 = 14
5 * 1 * 5 = 25
1 * 3 * 11 = 33

Diagonal secundária

1 * 7 * 5 = 35
2 * 1 * 11 = 22
5 * 3 * 1 = 15

Somatório diagonal principalSomatório diagonal secundária

(14 + 25 + 33)(35 + 22 + 15)

72 – 72 = 0

Os pontos somente estarão alinhados se o determinante da matriz quadrada calculado pela regra de Sarrus for igual a 0.


Exemplo 2

Considerando os pontos A(2, 2), B(–3, –1) e C(–3, 1), verifique se eles estão alinhados.



Diagonal principal

2 * (–1) * 1 = –2
2 * 1 * (–3) = –6
1 * (–3) * 1 = –3

Diagonal secundária

1 * (–1) * (–3) = 3
2 * 1 * 1 = 2
2 * (–3) * 1 = –6

(– 2 – 6 – 3) – (3 + 2 – 6)
– 11 – (–1)
– 11 + 1 = – 10


Pelo resultado do determinante da matriz verificamos que os pontos não estão alinhados. 

WWW.mundoeducação.com.br
 

Nenhum comentário:

Postar um comentário